Course Title ## **Designing Interactive VR Application of Buildings** This course includes knowledge of the techniques, technologies and tools needed to develop a VR **Course Description** application for historic buildings. Structural Programming Skills Object Oriented Programming (C#) Basic 3D Geometry(Vectors, Coordianate Systems etc.) Prerequisites > Teaching architectural modeling Teaching architectural visualization Teaching to develop VR apps **General Objectives** Teaching to desing and implement interaction tecniques | Main Topic | Sub-topic | Learning outcomes | Teacher-centred Activities | Student-centred activities | Assigned resources and materials | Explanations | |---|---|---|--|--|--|--| | Introduction to 3D modelling | Definition of a 3D model History of 3D technology Application fields of 3D modeling 3D modeling for architecture Challanges and opportunities | Students gain awareness of 3D modeling Studens gain awareness about history of 3D technology Students learn the use of 3D modeling in architectural field Students understand the potential of 3D modeling | Lecturing with slides Question&Answer Method Discussion Question&Answer Method | Discussing the first impression Searching 3D history milestones Discussing the future development Preparing one-minute paper | Slides
Videos | We will provide fundemental information regarding 3D technology, how to use it in different fields and introduce these technologies to the students, with a particular focus on the architecture applications. | | Building a 3D model | Open-source and commercial softwares for 3D modelling Introduction to Blender Editing tools Modelling steps for the architecture Creating and modelling objects | Students learn the 3D modelling fundamentals Students recognize the Blender software Students experiment the editing tools of Blender Students understand the 3D modelling process Students create their own 3D model | Lecturing with slides
Demo on Blender
Guided Discovery* | Installing and using Blender Practising with the editing tools of Blender Creating their first 3D model | Slides
PCs | Students learn how to install a 3D modelling software (Blender) and how to use it to recreate an architectural 3D model | | Editing the 3D model | UV unwrapping Nodes and materials Texturing Particle settings Lighting the environment Rendering and exporting | Students practice coloring the 3D model Students texturize the 3D model Students add particle settings to the 3D model Students add lights to the model Students render the model and export it in various formats | Lecturing with slides
Demo on Blender
Guided Discovery* | Searching and downloading materials for 3D model Unwrapping the 3D model Texturizing the 3D model Adding lights in the 3D environment Rendering the 3D model and exporting it | Slides
PCs | Students learn how to use the editing tools of Blender and to export the rendered 3D model | | Introduction to Virtual Reality
Technologies | History of VR Technology
Challanges,Oppurtunities
Elements of VR | Students gain awareness of VR technologies
Students can use VR equipment
Students learn the usage of VR in different fields | Lecturing with slides
Demo of VR devices
Demo of VR products | Testing VR equipment Discussing the first impression Searching VR technology in internet | Slides
Video
VR Equipments | We will provide fundemental information regarding VR technology and how to use them for different fields and introduce these technologies to the students. | | Introduction to Game Engines | Introducing and installing development environment (Unity Game Engine) Unity Interface and menus Unity assets and components Deploying an app to devices | Students comprehend the game engine fundamentals Students familiar with the game engine editor Students run the first app in Unity Students deploy the app to a device | Lecturing with slides Demo on game engine editor Question&Answer Method Demo on VR device | Installing the game engine editor Running the first sample app on the editor Deploying the first app to a device | Slides
Video
VR Equipments | Students learn game engine concepts and how to install game development environment, Unity Game Engine and code the first game app. | | Game Development
Fundementals | Coordinate System Vectors Operations Dot Products, Cross Product Transforming game objects Built-in methods | Students apply mathematical knowledge and skills to 3D programming Students know how to transform game objects Students know lifecycle of built-in methods one | Lecturing with slides Demo of 3D Programming in Game Engine Demo of Built-in methods in Game Engine Discussion | Studying game mathematics on the paper
Code practising for 3D programming in Game
Engine
Preparing one-minute paper | PCs
Slides
Sample codes
3D Vector Grapher App | This lecture gives background regarding game mathematics and how to use it in the game engine for object transformations. | | Exporting 3D Building Model to Game Engine | Configuring 3D model
Setup texturing
Setup lighting | Students export the model into the game engine
Students embed textures into materials
Students configure environment lighting | Lecturing with slides Demo on game engine editor Demo on VR device Guided Discovery* | Creating a study group Each student creats a simple 3D model and exports it into the game engine Practising texturing and lighting on the model in game engine Comparison of each model in the group | PCs
Slides
VR Equipments
Free 3D models | Students learn how to properly export 3D models to the game engines and successfully set up game object materials and global illumination for lighting. | | Selection Techniques | Highlighting
Virtual Hand
Raycasting | Students highlight virtual objects Students select objects with virtual hands and raycasting Students gain awareness of state of art selection techniques | Lecturing with slides Demo of selection type with role play** Demo on game engine editor Demo on VR device Guided Discovery* | Code practising of selectinon tecniques Testing selection tecniquies in VR equipments Searching and preparing a report about state of art selection tecniquies | PCS
Slides
Sample Codes
VR Equipments | Students learn object selection which is a primary technique used in VR. Students will learn the most famous selection techniques such as virtual hand and raycasting. | | Manipulation Techniques | Translating
Rotating
Scaling | Students move, rotate, and scale the objects in Game Engine Students move, rotate, and scale the objects on VR devices | Lecturing with slides Demo of manupulation methods with role play** Demo on game engine editor Demo on VR device Guided Discovery* | Practising manipulation methods on real life objects
Code practising for manipulaiton tecniques in game
engines
Testing manipulaiton tecniquies in VR equipments | PCS
Slides
Sample Codes
VR Equipments | Students will learn how to change the position, orientation, and scale of objects in VR environments. | |--|---|--|--|--|--|---| | Mixed Reality ToolKit (MRTK) | Integrating MRTK to Game Engine
MRTK Interactions
MRTK User Interface | Students utilize MRTK in-game engine
Students perform MRTK interactions
Students modify and use the MRTK interface | Demo on game engine editor
Demo on VR device
Guided Discovery* | Code practising using MRTK Testing MRTK in VR devices Preparation of a report regarding MRTK API | PCs
Sample Codes
VR Equipments | Students will learn how to implement MRTK, an input system for spatial interactions and UI supporting a wide range of platforms. | | Measurement Interaction Tools for Architecture Education | Measuring Tape Hose Plumb Whiteboard Annotations | Students develop measurement interactions Students implement virtual measuring tape, hose, plumb, whiteboard, and annotations to measure the building | Lecturing with slides and videos
Demo on game engine editor
Demo on VR device
Guided Discovery* | A case study: examining the measurement process of real building Code practising for interaction tecniques regarding these tools in game engines Testing these interaction tecniquies in VR equipments | Architectural Tools:measuring tape, hose, plumb PCs Sample codes VR Equipments | Students learn how to implement virtual interaction tools such measuring tape, hose, plumb, whiteboard, and annotations in VR architectural environments. | | Multiuser Interaction in Virtual Building | Photon Unity Networking
Creating Virtual Rooms
Adding Multiuser (Meta Avatar SDK)
Interaction Sychronization | Students create a multi-user VR environment using photon networking Students develop multi-user interaction in VR. Students implement the experience of social presence using Meta Avatar SDK. | Lecturing with slides and videos Demo on game engine editor Demo on VR device Cooperative Group*** | Code practising for interaction tecniques regarding these tools in game engines Testing these interaction tecniquies in VR equipments Students customize their own avatars Cooperative Group*** | PCs
Sample codes
VR Equipments
Avator Creater App | Students willl learn how to create multi user interaction with Meta Avatars SDK. | ^{*}Guided Discovery: The teacher poses a problem for the students and provides hands-on training by providing the students with a series of steps to follow. **Role Play: Students and teacher act out real life dilemmas or decisions to solve problems ***Cooperative Group:Small group work that features positive interdependence, individual accountability and collaboration skills